SCIENZA - Maggio 1997 | |
La legge delluniverso? Quella di Murphy Quello che segue è preso da un articolo comparso su Exn-news (www.exn.net) firmato da Gloria Chang. Largomento è la famigerata legge di Murphy, quella che afferma una sacrosanta verità: "Se una cosa può andare male, andrà male". Ma, questo è il bello, scienza e matematica stanno scoprendo non solo che spesso è proprio così. Ma soprattutto il motivo per cui quando cade una fetta di toast imburrata o con la marmellata, cade sempre sul pavimento dalla parte del burro o della marmellata; o perché è vero che la fila che si sceglie con il carrello al supermercato o in auto al casello dellautostrada è sempre la più lenta. Insomma la "sfiga" è scientifica La ben nota espressione chiamata Legge di Murphy ("se una cosa può andare male, andrà male") dà una giustificazione umoristica, se non pessimistica, al fatto che spesso tutto sembra andare male. Ad esempio, perché quando una fetta di toast imburrata cade dalla tavola atterra sempre dalla parte del burro? Perché è così difficile trovare due calzini uguali quando si cerca nel cassetto prima di andare al lavoro? E perché la fila al supermercato che abbiamo scelto con il carrello è sempre più lenta delle altre? Sono tutte coincidenze? No. Un fisico infatti ha scoperto che in effetti le leggi delluniverso sono realmente contro di noi. Robert Matthews, ricercatore dellAston University di Birmingham (Inghilterra), ha fatto la terribile scoperta dopo aver sperimentato la comune osservazione che il toast cade sempre dalla parte sbagliata, cioè quella imburrata. Prima ha provato la teoria con due pezzi di legno uguali sul tavolo. Poi ha provato con le fette di toast. E, sorpresa (mica tanto), ha visto che in effetti è molto più probabile che sia la parte imburrata a spiaccicarsi sul pavimento. Adesso arriva il meglio: perché il toast fa lantipatico? Non perché il burro cambia laerodinamica del toast, visto che "succede anche se ne metti una piccolissima quantità". Matthews invece ha visto che latterraggio della fetta di pane è determinata dalla frequenza di rotazione. Insomma dai giri che la fetta fa dal tavolo al pavimento. Quindi il problema è che un normale tavolo è generalmente troppo basso per permettere al toast, o ad ogni altro oggetto delle stesse dimensioni, di fare una rotazione completa e cadere sulla parte non imburrata. Il successo nella scoperta ha così spinto lo scienziato a estendere lanalisi della Legge di Murphy anche in altri campi. "Il fatto è che la scienza guarda a queste cose che sembrano essere solo credenze popolari, con troppa sufficienza". Così avanti con gli esperimenti. Come quello delle calze. Tutti sanno che ogni tanto, inevitabilmente, se ne perde una. E, tutti lo hanno notato, non è uninvenzione il fatto che quando si cerca tra le calze che restano nel cassetto il numero di abbinamenti sbagliati è incredibilmente alto. Il fenomeno esiste e si chiama "matematica combinatoria". Immaginate di avere molte paia di un solo tipo di calze, diciamo blu. Se ne scegliete due qualsiasi, avrete sempre ovviamente due calze blu. Se avete diverse paia di calze, stavolta divise in due colori diversi come rosso e blu, le probabilità di pescare dal cassetto due calze rosse o due calze blu, è 50/50. Prendetene 3 dal cassetto, e certamente avrete almeno un paio di calze uguali. Dovè il guaio? Che più sono i tipi diversi di calze che avete, meno facilmente troverete, pescando dal cassetto, due calze uguali. Comunque tranquilli: Matthews suggerisce una soluzione. Che non è la geniale idea di comprare un solo tipo di calze (e perché no poi?). Ma quella di comprare diverse paia di due tipi di calze. Come dire otto paia di calze blu uguali e otto di calze rosse. Il sistema, dice Matthews, funziona. Le calze, comunque, continueranno a sparire misteriosamente lo stesso. Ma anche la tremenda legge di Murphy sulla coda più lenta ("la fila vicino a te in genere finisce prima") rientra in un problema matematico. Se al supermercato stai aspettando dietro a una persona che nel carrello ha la scorta di cibo per due mesi, non cè da stupirsi se la tua fila andrà più lenta delle altre vicine. Ma perché, a parità di lunghezza e spese normali, le file alla tua sinistra e alla tua destra quasi sempre finiscono prima? E solo unimpressione, una questione di nervi? In realtà, no. Ancora una volta Murphy ha ragione. E vero che mediamente le code (ad un casello, al supermercato, allo stadio) si muovono più o meno allo stesso modo, dice Matthews. In più ogni cassa può andare incontro a rallentamenti casuali, ma sempre allinterno di una media. Come il cassiere che deve andare a cambiare i soldi o il bancomat del cliente che non funziona. Ma quando siamo in fila in quel preciso istante, non ci preoccupiamo delle medie, ma solo di quellistante. In questi casi, le possibilità di aver scelto la fila più veloce è di una sul numero totale delle code che ci sono in quel momento. Esempio: se ci sono 10 casse (e dieci file) hai 1 probabilità su 10 (cioè solo il 10 per cento) di aver scelto la coda più rapida. E anche se fai riferimento solo alle file ai tuoi lati, hai solo 1 probabilità su 3 di aver azzeccato quella giusta. Insomma è sempre più facile finire in una coda lenta che in quella veloce. Luniverso allora trama contro di noi? Non sempre, dice Matthews. A volte è solo questione della nostra memoria selettiva. Così se la macchina si rompe mentre stiamo andando ad un appuntamento importante, noi ricordiamo questo episodio piuttosto che le mille volte che non è successo niente. Cè comunque una via duscita a queste angosce cosmiche. Robert Matthews spiega che quando vedi una fetta di toast che sta per cadere, bisogna assolutamente resistere dal cercare di prenderla. Ma invece dargli un altro colpo o togliere il piatto da sotto. Insomma aiutarla a cadere. Motivo: la causa per cui il toast insiste a cadere dalla parte sbagliata è il tempo che il toast spende traballando sul piatto. Se si riduce questo tempo, è meno probabile che cadendo il "giro" finisca dalla parte del burro. "E questa è solo una delle cose che si possono fare - dice - Limportante per aggirare il problema è capirlo". Sia benedetto, mister Matthews. |